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Abstract We show that a formalism proposed by Creutz to evaluate Grassmannintegrals provides an algorithm of complexity O(2nn3) to compute the generatingfunction for the sum of the permanental minors of a matrix of order n. This algo-rithm improves the Brualdi-Ryser formula, whose complexity is at least O(25n/2).In the case of a banded matrix with band-width w and rank n, the complexity is
O(2min(2w,n)(w + 1)n2).Related algorithms for the matching and independence polynomials of graphsare presented.
Keywords Dimer problem
AMS subject classifications 05C69; 05C70; 15A15

1 Introduction

Let G = (V,E) be an undirected graph with v = |V | and e = |E|. A matching of G is a set
of pairwise disjoint edges. The matching generating polynomial of G, i.e. the generating
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84 P. Butera, M. Pernici
function of the number N(i) of different matchings of G containing i edges, defined by

M(t) =
[v/2]

∑
i=0

N(i)t i (1)

first appeared in combinatorics as the “rook” polynomial [17]. It was then introduced
in statistical physics [9, 10] for the study of the monomer-dimer system on a lattice and
in theoretical chemistry [11] to compute the “Hosoya index” Z(G) = M(1), i.e. the total
number of matchings of G.

M(−1) on a lattice graph can be interpreted as the Witten index of a supersymmetric
dimer model defined on that lattice [4].

For a generic graph, the best current algorithms for computing the matching generating
polynomial are based on recurrence relations [7]. Alternatively, for a bipartite graph the
coefficients of the matching polynomial can be computed as the sum of the permanental
minors of the reduced adjacency matrix of the graph (defined as the submatrix of
the adjacency matrix from the even to the odd vertices). The best current algorithm for
computing the sum of the permanental minors is the Brualdi-Ryser formula [2]. Notice
that even in the case of the permanent of banded matrices the complexity of currently used
algorithm is in general exponential. In [24] it was shown that for banded matrices which
are block factorizable the permanent can be computed in polynomial time.

The study of graph matchings can be naturally formalized by introducing anticommut-
ing variables [5, 13, 20], so that the edges in a matching cannot overlap due to the Pauli
exclusion principle. Creutz introduced an efficient algorithm for Grassmann integration
[3]. In [6] the Creutz algorithm is applied to a graph coloring problem.

In this paper, we shall present a simplified form of the Creutz algorithm, in which
Grassmann integration reduces to simple polynomial manipulations.

A hard object is represented as a product of even elements ηi of a Grassmann algebra,
associated to the nodes i of the graph on which the objects lie. The ηi-elements
are commuting and nilpotent and are represented as products ηi = θ̄iθi of anticommuting
variables θi, θ̄i. In the case of dimer systems, this notation was introduced [5, 8, 13] as a
starting point to deduce the free-fermion interpretation of the close-packed dimer model on
planar lattices.

The generating function that counts the hard objects is a Grassmann integral of a product
on these objects.

Our algorithm to compute the generating function of the sums of the permanental
minors of a matrix of order n has time complexity O(2nn3), while for the Brualdi-Ryser
formula the complexity is larger than O(25n/2). In the case of banded matrices with a fixed
band-width w the former algorithm has quadratic complexity in n, O(22w(w+ 1)n2), the
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Sums of permanental minors using Grassmann algebra 85
latter exponential.

In the case of dimers, the η-elements are associated to the end-point of the dimer and
we obtain efficient prescriptions to compute the matching polynomial for both bipartite and
non-bipartite graphs.

Another important graph polynomial associated to G, the independence polynomial,
I(t) = ∑i≥0 a(i)t i, with a(i) the number of independent subsets of i vertices in V , can be
similarly derived. In this case the hard object is represented by η-elements associated to
the edges adjacent to a vertex.

Appendix A tabulates the values of the Witten indices in the cases of square and
hexagonal lattices with relatively large size, for some of which we disagree with the results
of the calculation in [25].

We provide an implementation of these algorithms in Python; examples of its usage are
given in Appendix B.

2 An algebraic formalism for counting hard objects on a graph

Define a “hard object” a on a graph G with vertex set V and edge set E as a subset Va of
the vertices in V . This is a generalization of the notion of dimer. Configurations of two or
more hard objects onto G are admissible provided they have no common vertices (i.e. the
vertex subsets of the various objects are “independent”).

Let us associate to each object a the expression

Oa = 1+wa ∏
i∈Va

ηi (2)

where wa is a weight factor, and the product runs on a set of elements ηi = θ̄iθi, where θi,
θ̄i are Grassmann anticommuting variables.

Define

A =
∫ v

∏
i=1

dθi dθ̄i exp
(
∑ θ̄iθi

)
A (3)

where the Berezin integration [1] over anticommuting variables is used.
The η-elements satisfy the rules

η2
i = 0 (4)

ηiη j = η jηi (5)

ηi1 · · ·ηik = 1 (6)
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86 P. Butera, M. Pernici
when i1, . . . , ik are all distinct. Consider now the product of all admissible objects onto the
graph G

ZG =

〈
∏

a
Oa

〉
. (7)

One can write

ZG =

〈
∏

a

(
1+wa ∏

i∈Va

ηi

)〉
=
∫

dθdθ̄ exp(S) (8)

with
S = ∑

i∈V
θ̄iθi +∑

a
wa ∏

i∈Va

θ̄iθi. (9)

If wa = t for all a, where t is a variable, ZG(t) is the generating function of the number
of ways to settle the hard objects onto the graph.

Observe that after performing a partial product ∏b Ob, if an element ηi does not occur
in the remaining products in ZG, then one can replace ηi with 1. This reduces the number
of possible monomials, thus simplifying the product. To save memory and improve perfor-
mance, the product should be ordered in such a way that only few elements ηi are present
for any partial product. This algorithm is a simplified version of the Creutz algorithm [3];
since the Grassmann variables θi and θ̄i appear only in ηi, we can avoid introducing the
Fock space for fermionic operators and use only simple polynomial manipulations.

2.1 Sums of permanental minors

The permanent of a n×n matrix A [15] is the coefficient of the x1 · · ·xn monomial in

n

∏
i=1

n

∑
j=1

Ai jx j, (10)

so obviously

perm(A) =
〈(

∑
i1

A1,i1ηi1

)(
∑
i2

A2,i2ηi2

)
· · ·
〉
. (11)

The sum of permanental k-minors of a square matrix of size n is

pk(A) = ∑perm(Ar,s) (12)

where r,s are all the (n− k)-subsets of {1, . . . ,n} and Ar,s is the minor obtained by
eliminating the rows r and the columns s. Using directly this formula [2], since the
complexity for computing the permanent of A using the Ryser algorithm [19] is O(2nn),
the complexity for computing the case k = n/2 for n even is

( n
n/2

)2O(2n/2n)' O(25n/2).
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Sums of permanental minors using Grassmann algebra 87
The generating function of the sums of permanental minors of the m×n matrix A is

∑
k

pk(A)tk =

〈(
1+ t

n

∑
i1=1

A1,i1ηi1

)(
1+ t

n

∑
i2=1

A2,i2ηi2

)
· · ·
(

1+ t
n

∑
im=1

Am,imηim

)〉
. (13)

To compute (13), after evaluating the i-th partial product, there are 2n monomials
in η, each of them multiplied by a polynomial of degree at most i in t. Multiplying by
(1+ t ∑

n
j=1 Ai, jη j) and expanding the product one gets i2nn terms, so that the complexity

of computing the generating function for the sum of permanental minors is O(2nm2n). In
all the estimates of the time complexity, we have neglected the contribution of number
multiplication.

In the case of a square banded matrix of size n with entries Mi j = 0 for |i− j| > w, at
the end of the i-th partial product, the number of η-elements is ν = min(2w,n), so
that there are 2min(2w,n) monomials in η, each multiplied by a polynomial of degree i; the
computational complexity is O(2min(2w,n)(w+1)n2), i.e. for fixed w, it is polynomial in n,
while the algorithm in [2] is exponential.

If one is interested only in computing the permanent using the Ryser algorithm [19],
the complexity is O(n2n), even in the case of banded matrices, while with our algorithm it
is O(n2).

If the matrix is “almost banded”, i.e. it has h non-zero elements outside the band, with
h small, we have to replace 2w with 2w+h in the above estimate of the complexity.

2.2 Matching generating polynomial

The matching generating polynomial of G, i.e. the generating function of the number N(i)
of different matchings of G containing i edges, is defined by

M(t) =
[v/2]

∑
i=0

N(i)t i. (14)

(Equivalently one defines the matching polynomial

µ(t) =
[v/2]

∑
i=0

(−1)iN(i)tv−2i (15)

related to the former by µ(x) = xvM(−x−2)).
Consider now (7) in the case of dimers:

ZG =

〈
∏
i, j

(1+wi, jηiη j)

〉
. (16)
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88 P. Butera, M. Pernici
The matching generating polynomial M(t) is obtained from ZG, setting wi, j = t.

To make clear by an example the algebraic manipulations used, consider the graph A in
Figure 1.
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Figure 1. The graphs A and B.

Evaluate the partial product O0O1 (O0 is associated to the edge E0 etc.): one has

MG = (1+ tη0η1 + tη0η2)O2O3O4O5O6 = (1+ tη1 + tη2)O2O3O4O5O6 .

In the last step η0 has been replaced with 1 since it does not occur in the remaining terms
O2, . . . ,O6. Similarly in the next step, after expanding the partial product O0O1O2 we can
set η1 = 1,

MG = (1+ t + tη2 + tη3 + t2η2η3)O3O4O5O6 .

In the partial product O0O1O2O3, a term (t + t2)η2η3 is added. After expanding the partial
product O0O1O2O3O4, we can set η2 = 1.

MG = (1+2t +(2t +2t2)η3 +(t + t2)η4 + t2η3η4)O5O6 .

In the partial product O0O1O2O3O4O5, we can set η3 = 1:

MG = (1+4t +2t2 +(t +2t2)η4 +(t +2t2)η5 +(t2 + t3)η4η5)O6 .

Finally
MG = 1+7t +11t2 +3t3. (17)

In each step there are at most two η-elements.
Given a graph G with v vertices and e edges, start with the empty graph G0 on v vertices,

add an edge to get G1; then continue to add edges, until Ge = G. For a graph Gi in this
sequence, an “active node” is by definition a node which is incident with at least one edge,
and has a degree less than the degree that the node has in G. The active node number ν is
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Sums of permanental minors using Grassmann algebra 89
the maximum number of active nodes in the sequence G0, . . . ,Ge. In general the size of the
computer memory used by the algorithm grows with a factor 2ν .

The graph A in the above example has active node number ν = 2.
The time complexity for computing the matching polynomial for graphs with small

active node number is O(2νv3), analogous to the case of the sums of permanental minors
for banded matrices; the space complexity is O(2νv2). For fixed ν, the complexity is
polynomial in v. Therefore one can deal with large graphs, provided ν is small.

We have not yet devised a general prescription to determine an ordering for which
ν is close to minimum. A simple greedy procedure to get a sequence with small (but
generally non-optimal) ν is the following: as long as it is possible, add an edge at the time
without increasing the value of ν; otherwise add an edge of one among the shortest paths
in G−{non-active vertices}, which join active vertices.

As an example of a sequence of random graphs with fixed ν, take a sequence of regular
bipartite graphs constructed in the following way. Let G0 be a cycle with k vertices, with
k even. Add another cycle with k vertices; the odd (even) vertices of this cycle are linked
respectively to the even (odd) vertices of the previous cycle in a random way, obtaining
G1; continue adding cycles in this way, obtaining the sequence Gi. The sequence of the
corresponding regular bipartite graphs is obtained by linking the vertices of the first and
last cycle. Since the active node number is ν = 2k (the vertices on the first and the last
cycle are active), computing the matching polynomials for a sequence of N cycle graphs
takes O(N2). The code for computing a sequence with k = 6 is included in the examples
reported in [16].

In [3] an ordering of fermionic variables, with the insertion of a projector excluding
a fermionic operator, is similarly chosen. Since this formalism is applied to fermions on
a finite square lattice (a grid), there is a natural way to establish a longitudinal direction
and a transverse direction. Only fermionic modes on the transverse direction appear in the
computation, so one can deal with long grids with few modes in the transverse direction.

Observe that from (16), distributing a term (1+wk,lηkηl) we get

ZG(t) =
〈

∏
i, j 6= k,l

(1+wi, jηiη j)

〉
+wk,l

〈
∏

i, j : i 6=k,l; j 6=k,l

(1+wi, jηiη j)

〉
(18)

which gives a recursion relation for matching generating polynomials [7]

ZG(t) = MG− k,l (t)+ tMG−k−l(t). (19)

If the graph G is bipartite, let us indicate by yi the elements associated to the even sites,
with ηi those associated to the odd sites; then

International Journal of Graph Theory and its Applications 1 (2015) 83–96



90 P. Butera, M. Pernici

ZG =

〈(
1+∑

i1

y1w1,i1ηi1

)(
1+∑

i2

y2w2,i2ηi2

)
· · ·
〉
. (20)

Since the y j element occurs only in the j-th term of the product, it can be set equal to unity,
so that

ZG =

〈(
1+∑

i1

w1,i1ηi1

)(
1+∑

i2

w2,i2ηi2

)
· · ·
〉

(21)

which gives (13) in the case wi, j = tAi, j.
As an application, we have computed M(−1) for some periodical square lattices and

for some hexagonal lattices in the brick-wall representation considered in [25]; we disagree
with [25] in some cases, see Appendix A.

2.3 Independence polynomial

The independence polynomial IG(t) = ∑i≥0 a(i)t i is the generating function for the
number a(i) of ways of choosing i independent vertices on G. A hard object is made
by associating to a vertex the product of the η-elements on the edges incident with that
vertex. The greedy algorithm for ordering the product consists in choosing a short path in
G−{non-active vertices}.

The matching generating polynomial of a graph G is the independence polynomial of
the line graph of G.

As an example, consider the graph A, whose line graph is B (see Figure 1). Evaluate
the partial product O0O1, set η8 = 1,

I = I(L(A)) = I(B) = O0 · · ·O6 = (1+ tη9 + tη4η7)O2 · · ·O6 . (22)

Evaluate the partial product O0O1O2, set η9 = 1,

I = (1+ t + tη4η7 + tη5η6 + t2η4η5η6η7)O3 · · ·O6 .

Evaluate the partial product O0O1O2O3, set η6 = η7 = 1,

I = (1+ t + tη4 + tη5 +(t + t2)η2η3 + t2η4η5)O4 · · ·O6 .

Evaluate the partial product O0O1O2O3O4, set η3 = η4 = 1,

I = (1+2t +(t2 + t)η0 +(t + t2)η2 +(t + t2)η5 + t2η0η5)O5O6 .

Evaluate the partial product O0O1O2O3O4O5, set η2 = η5 = 1,

I = (1+4t +2t2 +(t +2t2)η0 +(t +2t2)η1 +(t2 + t3)η0η1)O6 .
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Sums of permanental minors using Grassmann algebra 91
Finally one gets the same as in (17).

As a check, we computed I(−1) for the hexagonal lattices in the brick-wall represen-
tation considered in Table VII of [25], which can be interpreted as the Witten index of the
quantum hexagonal model.

As another application, we computed I(1) for square grids of size up to 35× 35. The
results agree with [21] where results are reported up to the size 33×33.

For the 34×34 square grid, we get

I34×34(1) = 3878911289332348890195252450487984898184978817766345
1554342902552063467216387170202504801083048930878829
1356426276659253850079610851584099797152548773065607
505250668587876084152495126750481594564582029827282.

In the 35×35 case, we get

I35×35(1) = 7212429471271721428677636035984554994106761697256390
2046316263757753676843828248033036148852945185908035
2531105163572088090791318813115216464895690039496048
2237642072353636757799866198481165107368353208757977
68521522195.

In theoretical chemistry I(1) is called the Merrifield-Simmons index [14]. In Appendix
B we have computed the Merrifield-Simmons index of the Buckminster fullerene.

3 Conclusions

We have shown that a simplified version of the Creutz algorithm can be used to compute
sums of permanental minors, matching and independence polynomials. In the case of the
sums of permanental minors, we have shown that this algorithm has lower complexity than
using the Brualdi-Ryser formula. The algorithms are in general exponential, but they can
become polynomial in particular cases. For example, sums of permanental minors have
polynomial complexity if the matrix is banded. It is then important to be able to recognize
whether a matrix can be brought to banded form by permuting its rows and its columns.
A similar ordering problem is met when computing the matching and independence
polynomials. We did not address the problem of finding an optimal ordering: presumably
it is related to the tree decomposition of graphs [18].

International Journal of Graph Theory and its Applications 1 (2015) 83–96



92 P. Butera, M. Pernici
Appendix A: The Witten index for rectangular and hexagonal periodic
lattices

In [25] the Witten index W =∑(−1)iN(i) is evaluated for the supersymmetric dimer model.
For the largest lattices we agree with these results only modulo 232. We think it is likely
that in [25] the large integer arithmetic was inadequately managed. We checked only the
cases m×n for m,n≥ 4 and both even. The disagreeing values are listed in Tables 1 and 3.

We have computed the index W (G) also for the larger lattices indicated in Table 2. The
quantity |W |(1/(mn)) should be compared with the expression W = 2rmn cos(mnθ+ θ0) of
[25], where r = 1.33±0.01.

We have compared our evaluations of the Witten indices with the results in [25] also in
the case of hexagonal lattices. Our results agree only modulo 232 with [25] (Table VIII in
that reference); the disagreeing values are shown in Table 3.

We have computed the index W also for the larger lattice indicated in Table 4. For
10 ≤ m,n ≤ 16 the Witten index per site |W |(1/(mn)) is between 1.156 and 1.192 with an
average value 1.18, which lies below the interval r = 1.4±0.1 reported in [25].

m n W |W |(1/(mn)) W in [25] |W |(1/(mn)) in [25]
10 8 −14550253471 1.340 −1665351583 1.304
10 10 3235851927936 1.334 1741554048 1.237

Table 1. Comparison of the values of the Witten index W (G) for a square grid G of size
m×n obtained by the algorithm introduced in this paper with the disagreeing results in

Table III in [25].

m n W |W |(1/(mn))

12 10 −139080563404700 1.312
12 12 988571682202805376 1.333

Table 2. The values of the Witten index W for a square grid of size m×n larger than those
considered in [25].
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m n W W in [25]
10 14 7711439360 −878495232
10 16 −655517342208 1612654080
12 12 94909515776 420235264
12 14 6459966411264 335598080
12 16 100182729294336 −1677852160
14 10 11948085184 −936816704
14 12 6736033699456 1524979328
14 14 742553681809408 1080971264
14 16 −1384901745575424 1869085184

Table 3. The values of the Witten index W for hexagonal grids of size m×n, disagreeing
with those considered in [25].

m n W
16 14 −119633551609600
16 16 −6060918132969537536

Table 4. The values of the Witten index W for hexagonal grids of size m×n larger than
those considered in [25].

Appendix B: Usage of the Python module “hobj”

The module “hobj” can be downloaded from [16]. It can be used without any dependence;
the code for univariate polynomials, represented as arrays, is adapted from SymPy [23].
Here is the example for the graph A in Figure 1.

>>> from hobj import dup_matching_generating_poly
>>> d = {0:[1,2], 1:[0,3], 2:[0,3,4], 3:[1,2,5], 4:[2,5], 5:[3,4]}
>>> dup_matching_generating_poly(d)
[3, 11, 7, 1]

Since it is a bipartite graph, one can compute it also using the reduced adjacency matrix.

>>> from hobj import dup_permanental_minor_poly
>>> from domains import ZZ
>>> m = [[1,1,0],[1,1,1],[0,1,1]]
>>> dup_permanental_minor_poly(m, ZZ)
[3, 11, 7, 1]
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In the case of bipartite graphs the second way is often faster.

The following examples take a fraction of a second on a current personal computer.
Compute the sum of the permanental minors of a banded matrix.

>>> from hobj import dup_permanental_minor_poly
>>> from domains import ZZ
>>> m = [[i*j if abs(i-j) < 6 else 0 for i in range(20)] for j in range(20)]
>>> sum(dup_permanental_minor_poly(m, ZZ))
11936810897247956264161397956481650508142206788L
>>> dup_permanental_minor_poly(m, ZZ, 1)
11936810897247956264161397956481650508142206788L

The second way is faster and uses less memory because it avoids constructing the
polynomial. Similarly in the following examples.

Let us call “hobj” from Sage [22] and compute the sum of the coefficients of the
matching polynomial for the Buckminster fullerene C60 (truncated icosahedron) computed
first in [12].

sage: from hobj import dup_matching_generating_poly
sage: d = graphs.BuckyBall().to_dictionary()
sage: sum(dup_matching_generating_poly(d))
1417036634543488
sage: dup_matching_generating_poly(d, val=1)
1417036634543488

Same for the independence polynomial.

sage: from hobj import dup_independence_poly
sage: sum(dup_independence_poly(d))
217727997152
sage: dup_independence_poly(d, val=1)
217727997152
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